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ABSTRACT
Recently, mesh networking and blockchain are two of the
hottest technologies in the telecommunications industry.
Combining both can reformulate internet access and make
connecting to the Internet not only easy, but affordable
too. Hyperledger Fabric (HLF) is a blockchain framework
implementation and one of the Hyperledger projects hosted by
The Linux Foundation. We evaluate HLF in a real production
mesh network and in the laboratory, quantify its performance,
bottlenecks and limitations of the current implementation.
We identify the opportunities for improvement to serve the
needs of wireless mesh access networks. To the best of
our knowledge, this is the first HLF deployment made in a
production wireless mesh network.

1. INTRODUCTION
Network infrastructures are critical to provide local and

global connectivity that enable access to information, social
inclusion and participation for everyone. Local connectivity
largerly relies on access networks. Wireless mesh networks
(WMNs) are the access networks comprising of wireless
nodes namely wireless mesh routers and wireless mesh clients.
A client (irrespective of whether it is a mesh or a generic
client) can access the Internet through a WMN [1].

Community networks are network infrastructure commons,
built by citizens and organizations which pool their resources
and coordinate their efforts, characterized by being open, free
and neutral [5].

Community Mesh Networks (CMNs) are a special case of
WMNs which are usually setup as a community network. The
CMNs have been identified as one of the models contributing
to connecting the next billion people that are still without the
Internet access [9]. Guifi.net1 is an example of such a com-
munity effort which is one of the biggest community networks
in the world, with more than 34.000 participating routers.

1
https://guifi.net/

The idea of CMNs, nobel as it seems, does not come with
out its fair caveats. Since the nature of CMNs is peer-to-peer
there are concerns related to trust among various participating
peers and how to make this volunteer effort economically
viable and sustainable as well [3].

As an example scenario we consider the economic
compensation system in Guifi.net [3]. The idea of the com-
pensation system is to create a balance between total resource
contribution and its consumption. The economic value of
the contribution and consumption of network resources for
each participant and in a given locality are recorded. The
overall result is a zero-sum budget where the participants with
over-consumption or negative balances, have to compensate
those with over-contribution or positive balances.

Currently the above described economic compensation
system is implemented in a manual manner. What this means
is that a participant puts forward a claim of its consumption
and then the Guifi.net foundation2 validates this claim by
cross checking it with their own network traffic measurement
data and network inventory. Any disparities between these
two records are then flagged. There is, however, room for
errors or even malicious activities such as false claims put
forward by a participant, the recorded data being tampered
with, or simply mistrust among the parties. There is a need
for a system where participants can trust that the consumption
of resources is being accounted in a fair manner, and that
these calculations and money transfers are done automatically
to avoid the cost, delays, errors and potential mistrust from
manual accounting and external payments.

Blockchain is one of the solutions that seems quite apt to
make the peer-to-peer nature of CMNs trusted and economi-
cally sustainable. Blockchain (more details in Section 2) is an
immutable and distributed data storage without the provision
of retrospective mutation in data records. However, most
blockchain networks are usually open and permissionless
that also encourage the users of such a network to be anony-
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mous [10]. This implies that anyone, without revealing its true
identity, can be part of such a network and make transactions
with another similar anonymous peer of the network.

In the perspective of CMNs, however, such as in Guifi.net
every participant who joins the network to contribute to the
infrastructure must first register its identity and the identity
of the resources that it contributes to the wider pool. This is
particularly needed so that a malicious entity such as hidden
nodes in Guifi.net used by other ISPs to provide services to
their users can be filtered out [11]. Because of such registration
process one also needs an efficient identity mechanism on
top of blockchain’s immutable record keeping. Permissioned
blockhains are part of such solutions. These blockchain
solutions are mostly envisioned for business networks where
there is often a stringent requirement of know your customer in
addition to keeping the intra- and inter-business transactions
confidential. Hyperledger3 (see Section 2.1 for details) is
one such solution that realises the concept of permissioned
blockchains and which we also use in our current study.

In this study we explore combining CMNs with a permis-
sioned blockchain that can result in decentralized mesh access
networks that make connecting to the internet not only easy
and widespread, but trustful and more economical as well.

Our key contributions are summarized as follows:

• First, we deploy the Hyperledger Fabric platform in a pro-
duction wireless mesh network that is part of Guifi.net.
We quantify the performance of the platform in terms of
transaction confirmation/completion latency, CPU and
memory utlization of HLF components etc. To the best
of our knowledge, this is the first Hyperledger Fabric de-
ployment made in a production wireless mesh network.

• Second, driven by the findings in a mesh network, we
propose a placement scheme for Hyperledger Fabric
components that optimizes the performance of the
blockchain protocol.

2. BLOCKCHAIN: THE UNDERPINNING
TECHNOLOGY

Blockchain is a append-only immutable data structure. Its
first incarnation was in the Bitcoin cryptocurrency network.
Blockchain was used to enable trust for financial transactions
among different non-trusting parties in a pure peer-to-peer
fashion without the need for going through a third financial
party like e.g., a bank. Such trust is provided in terms of
immutability of blockchain’s data structure. Each block in
blockchain contains information that is immutable. The im-
mutability aspect is rendered true by including the hash of all
the contents of a block into the next block which also chains the
blocks together. Tampering of one block disturbs the contents
of all the following blocks in the chain. Each block in the chain
is appended after a consensus is reached among all the peers
of the network. The same version of a blockchain is stored in a
3
https://www.hyperledger.org/

distributed manner at all the peers of the network. That is why
it is sometimes referred to as distributed ledger as well.

2.0.1 Open and public blockchain
Blockchain of Bitcoin [10], Ethereum4 [15], and in general

of various other cyptocurrencies are mostly open and public.
This means that anyone can be a part of the blockchain’s
network and make transactions with other parties. Anonymity
is also at the heart of such platforms. A user (or in general an
entity) usually uses the hash of its public key as its identifier
as opposed to using its real-world credentials. In the aspect of
openness the permissioned blockchains are in sharp contrast
with public blockchains which we discuss next.

2.0.2 Permissioned blockchain
Permissioned blockchain, a concept particualrly popu-

larized by the Linux Foundation’s Hyperledger, are usually
considered for business applications. In such applications the
identity of users are also important such as the requirement
of know your customers for many businesses. Hyperledger
tries to leverage the best of both worlds by implementing a
cryptographic membership service on top of blockchain’s
trusted, immutable, and distributed record keeping. In our
study the requirement of both users’ identity and trusted
record keeping is of paramount importance and that is why
we decided to conduct our study using Hyperledger Fabric,
which we discuss next.

2.1 Hyperledger Fabric (HLF)
Hyperledger Fabric (HLF) is an open source implementa-

tion of a permissioned blockchain network that executes dis-
tributed applications written in general-purpose programming
languages (e.g., Go, Java etc) [2]. HLF’s approach is modu-
lar, which implies that the platform is capable of supporting
different implementations of its different components (such
as different consensus protocols) in a plug-and-play fashion.

The HLF architecture comprises of the following
components:

Peers: Peers can further be of two types namely endorsers
and committers. A peer is called a committer when
it maintains a local copy of the ledger by committing
transactions into its blocks. A peer assumes the role of
an endorser when it is also responsible for simulating
the transactions by executing specific chaincodes and
endorsing the result (see the next subsection 2.2). A
peer can be an endorser for certain types of transactions
and just a committer for others.

Ordering service: The role of this component is to order the
transactions chronologically by time stamping them
to avoid the double spend problem [10]. The ordering
service create new blocks of transactions and broadcast
them to the peers which then append these blocks to
their local copy of the blockchain (or ledger). The

4
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ordering service can be implemented as a centralized
or decentralized service [14]. It is at the ordering service
where the actual consensus (like proof-of-work in
Bitcoin [10]) takes place.

Chaincode: A chaincode or a smart contract is a program
code that implements the application logic. It is run
in a distributed manner by the peers. It is installed
and instantiated on the network of Hyperledger Fabric
peer nodes, enabling interaction with the networks
shared ledger (i.e., the state of a database modeled as
a versioned key/value store).

Channel5: A channel provides a higher layer of confidential-
ity abstraction. A channel can be considered as a subnet
on top of a larger blockchain network. Each channel has
its own set of chaincodes, member entities (peers and
orderers), and a distinct version of a distributed ledger.

2.2 HLF Protocol
Figure 1 depicts the sequence of transaction execution steps

in HLF’s environment. The description of these execution
steps are as follows:

1. Tx proposal: In this step clients access the HLF
blockchain to submit a proposal for a Tx to be included
in one of the blocks of the HLF blockchain. Clients
propose a transaction through an application that uses
an SDK’s (Java, Python etc) API. This is shown as the
first step in Figure 1.

2. Endorsement and Tx simulation: The transaction
proposal from the above step is then broadcasted to the
endorsing peer nodes in the HLF blockchain network.
Each endorsing peer verifies the Tx proposal in terms
of its correctness (i.e., its structure, the signatures that
it contains, and the membership and permission status
of the client that submits the transaction) uniqueness
(i.e., this proposal has not be submitted in the past).

After the above checks comes the transaction simulation
step. Endorsing peers invoke a relevant chaincode
(as specified in the Tx proposal by the submitting
client). The execution (as per specific arguments
specified in Tx proposal) of this chaincode produces an
output against the current state of the database (ledger).
Without updating the ledger’s state, the output of the Tx
simulation is sent back in the form of proposal response
back to the client through the SDK. In Figure 1 this is
shown by the second step.

3. Inspection of proposal response: After the above step
the client-side application collects the responses from
the endorsement step. Afterwards all the responses
are cross checked (in terms of the signatures of the
endorsing peers and the content of the responses) to
determine if there are any disparities among the content
of the responses. If the content of all the responses are
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Figure 1: Hyperledger Fabric Protocol

the same and according to the pre-defined endorsement
policy (i.e., number of peers whose endorsements—in
terms of their signatures—are necessary) then the client
submits this Tx to the Ordering Service (more on it in the
next step) that will in turn ultimately update the ledger’s
state as per the Tx simulation outcome in the last step.

It can also happen that in the Tx proposal, made in the
last step, only the current state of the ledger was queried.
In this case there will be no need to update a ledger’s state
and hence there is no submission to the Ordering Service
by the client. In Figure 1 this is shown by step three.

4. Tx submission to the Ordering Service: The Ordering
Service collects various Txs after the last step via
various channels. It then orders them according to their
receiving times at the Ordering Service. This ordered set
of Txs is then included in a block specific to a channel
which will later be appended in the channel’s ledger.
Step four and five in Figure 1 shows this process.

5. Tx validation and commit: In this stage all the peers
belonging to a particular channel receive a block
containing Txs specific to this channel. Each peer then
checks all the Txs in terms of their validity. Valid Txs are
those that satisfy an endorsement policy. If the Txs pass
the validity test then they are tagged as valid otherwise
invalid in a block and then this block is appended to the
ledger maintained by the peers of this channel. This is
coverd by step six in Figure 1.

6. Ledger update notification: Finally, after the ledger
update in the last step the client of the submitting Tx is
notified about the validity or invalidity of the Tx that was
included in the latest block of the channel’s distributed
ledger. This is step seven in Figure 1.

3. CASE STUDY: QMPSU MESH
Quick Mesh Project (qMp) 6 provides a firmware based on

OpenWrt Linux with the aim to ease the deployment of mesh
6
http://qmp.cat/Overview
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Figure 3: Traffic ECDF

networks by the users who are willing to interconnect in an
area, and pool their Internet uplinks [6]. qMp was initiated
in 2011 by a few Guifi.net activists.

The qMp firmware has enabled to deploy several mesh
networks with actual end-users (e.g., more than 250 active
locations, typically households) in several parts surrounding
the city of Barcelona7. At the time of this writing, there are
10 different mesh networks, and the largest (Sants-UPC or
QMPSU) has 85 operational nodes. In that network, there are
two gateways that connect the QMPSU network to the rest
of Guifi.net and the Internet. Users join the mesh by setting
up outdoor routers (i.e., antennas) that automatically establish
router-to-router links. The outdoor routers are connected
through Ethernet to an indoor AP (access point) as a premises
network where the edge devices and services are running:
home-servers such as Raspberry Pi’s or Cloudy devices [4].

Network Performance: We monitored the QMPSU mesh
network for a period of one month. We took hourly captures
from the network for the entire month of March 2018. Figure
2 and 3 depict the bandwidth and traffic distribution of all the
links in the network. Figure 2 shows that the link throughput
can be fitted with a mean of 13.6 Mbps. At the same time
Figure 2 reveals that 60% of the nodes have 10 Mbps or less
throughput. Figure 3 demonstrates that the maximum per-link
traffic in the busiest hour is 1736 kbps. We observed that the
resources are not uniformly distributed in the network. There
is a highly skewed bandwidth and traffic distribution.

Node Deployment: Based on the network measurement
analysis we have strategically deployed 10 Raspberry Pi
(RPi3) devices on the outdoor routers to cover the area of
the QMPSU network as presented in Figure 4. We use our
previous work [13] on service placement to determine nodes
in the network. In this set, we cover nodes with different
properties: with higher bandwidth [13], nodes that are highly
connected (i.e., with high degree centrality) [7], nodes acting
as bridges (with high betweenness centrality) and nodes not
well connected. After the nodes were chosen, we deployed
10 RPi boards in the community users home.

4. EVALUATION
We setup a blockchain testbed network comprising RPi3

boards, each running a component of Hyperledger Fabric
(HLF) in the QMPSU network. In this testbed, different RPi3

7
http://dsg.ac.upc.edu/qmpsu
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nodes run different components of HLF (see Section 2.1 for
details on HLF components). In parallel, we also deploy a sim-
ilar setup in the lab environment (for performance comparison
purposes) and evaluate the performance in both environments.

4.1 Experimental setup
In our experiments, we deploy a HLF blockchain network

consisting of a single organizational entity. All the transac-
tions happen among the members of this single organization.
The HLF components, namely peer (we deploy multiple in-
stances of this component), orderer, and client are deployed in
different RPi3 boards connected to each other in the same local
network. The RPi3 boards have 1.2GHz 4 core ARM cortex
A53 processor, a RAM memory of 1GB and run raspbian-
stretch OS. Both, in the lab and in the QMPSU network, we
performed experiments by placing different HLF components
at different physical (RPi3) nodes and by varying the number
of peers from 1 to 4. We evaluate the setup in the lab and in
QMPSU network by comparing transaction latency of HLF
when 100 transactions are fired serially and in parallel. We also
evaluate transaction latencies in HLF for a 2 peer setup when
the block size is varied from 10 to 100 transactions per block.
Our experiments comprise of 3 runs (taken in different time
slots) and the presented results are averaged over all the runs.

4.2 Results

4.2.1 Transaction Latency
Table 1 lists the transaction completion time (referred to as

TTC: Time-to-Commit) for 100 transactions, initiated in par-
allel, between the two peer nodes in the lab environment and
in the QMPSU network respectively with block sizes ranging
from 10 to 100 transactions per block. It can be observed that,
as the block size increases, the transaction completion time in-
creases both in the lab setup as well as in the QMPSU network.

Transaction latency is defined as total time taken to endorse
and to commit a transaction to the ledger. Figure 5 shows the
comparison of transaction latency observed for two different
placements of HLF ordering service. We measured the transac-
tion latency when the HLF ordering service is placed randomly
in the network (Random) and when it is placed at the node
chosen with a heuristic that considers the node with higher

4



Block Size TTC(Lab) TTC(QMPSU) # of Tx
10 33.4 s 64.2 s 100
20 35.0 s 69.7 s 100
50 39.2 s 75.3 s 100
100 45.3 s 84.8 s 100

Table 1: Transaction delivery time (parallel transactions)

bandwidth and degree centrality (BASP) [13]. The results
of Figure 5 are obtained when a client initiates 100 transac-
tions sequentially. This Figure reveals that the gain brought by
BASP , for the case when we have one endorser in the network,
is 30.8%. For the case when we have four endorsers in the net-
work, the gain of BASP over Random is 24%. Further, Figure 5
demonstrates that in the QMPSU network it takes 1.2 seconds
for a single transaction to be appended to the distributed ledger.

4.2.2 Resource Consumption
Figure 6 shows CPU utilization by various components of

the HLF network namely: an orderer, a client and two peers (an
endorser and a committer). CPU utilization of all nodes is mon-
itored for a time period of 60 seconds during which 100 transac-
tions are initiated in parallel (by the client) and all the transac-
tions are completed. 100 parallel transactions took around 40
seconds to complete. We chose to monitor the nodes for a time
period of 60 seconds to show idle phase usage and busy phase
usage of each node. In the graph, transactions are fired at 11th
second and all the transactions get completed at 50th second.
It can be observed that the endorser is the node with the highest
CPU utilization whereas the orderer utilizes the least of CPU.

The Figure 6 shows that, for 100 transactions initiated at the
same time, the endorser’s maximum CPU utilization reaches
96%. The maximum CPU utilization is 81% for the committer
while it is 71% for the orderer. The reason that the endorser has
the highest CPU consumption, among other HLF components,
is because of the chaincode execution at the endorsing peer,
which does not happen in the committer and the orderer.

The chaincode container executes the chaincode for
each incoming transaction which does not happen at the
committer node. When multiple transactions happen in
parallel, concurrent execution of the chaincode happens for
all transactions, increasing the load on the endorsing peer.
With 100 parallel transactions, we observe that the CPU load
reaches to 96% at the endorser. However, the load on each
endorser can be reduced by deploying multiple endorsers in
the network. The load on different endorsers can be balanced
by designing a suitable endorsement policy and devising a
strategy at the client to request endorsements from different
set of endorsers each time a transaction is initiated.

Similarly, memory usage is the highest by the endorser
and the least by the orderer. Memory usage of committing
peer falls in between of endorsing peer and the orderer. In
orderer and committing peer, memory usage remains almost
the same between the idle phase and during transaction
execution. Memory usage in orderer mostly falls in the range

30.8%
26.3% 24% 24%

Figure 5: Transaction latency (QMPSU)
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Figure 6: CPU and memory utilization

of 57%-58% while the memory usage in the committer is in
the range of 57%-60%. In endorsing peer the memory usage
increases during transaction execution as the execution of
a chaincode also takes place at the same time. The memory
usage by the endorser is about 60% in idle phase and reaches
to a maximum of 65% during the chaincode execution.

4.3 Discussion
As we observed in our experiments that, in terms of

resource consumption, the endorser nodes can prove to be
a bottleneck. We believe that this bottleneck is because of
the execution of an additional chaincode container at each
endorsing node. In our current study we only considered one
endorser node to study the resource utilization with a simple
endorsement policy encoded in the corresponding chaincode.
It might get more complicated when we consider more than
one endorsers and with a sophisticated endorsement policy
(however, as discussed in Section 4.2.2, if done right it can
actually improve performance). In addition to this, the actual
distribution of endorsing peers in a production network, such
as QMPSU, might also affect the network performance (both
in terms of CPU utilization and transaction latency). So care
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must be taken, specially in the resource constrained nature of
CMNs, in designing an endorsing policy that is also cognizant
of the underlying network infrastructure (i.e, its topology; is
it mostly wired or wireless? etc).

5. RELATED WORK
The study [12] compares the public blockchain with

permissioned blockchain and discusses the trade-offs among
decentralization, scalability and security in the two approaches.
Sousa et al. [14] present the design, implementation and evalu-
ation of a BFT ordering service for Hyperledger Fabric based
on the the BFT-SMART state machine replication/consensus
library. Their results show that Hyperledger Fabric with their
ordering service can achieve up to ten thousand transactions
per second and write a transaction irrevocably in the
blockchain in half a second, even with peers distributed over
different continents. The Blockbench [8] is framework for
analyzing private blockchains. It serves as a fair means of com-
parison for different platforms and enables deeper understand-
ing of different system design choices.They use Blockbench
to conduct comprehensive evaluation of three major private
blockchains: Ethereum, Parity and Hyperledger Fabric. Their
result demonstrate that these systems are still far from replac-
ing the current database systems in traditional data processing
workloads. Most of the above mentioned works are not done
in CMNs context and are not applicable to our scenario.

6. CONCLUSION
The missing ingredient for widespread adoption of CMNs

has always been the issue of economic sustainability. In this
paper, we take on the issue of addressing trustworthy economic
sustainability by proposing the need for an economic substrate
built using blockchain that can keep a record of the transactions
related to the contributions (of nodes, links, Internet gateways,
maintenance) and consumption of communication network’s
resources in a decentralized and trusted manner. The evalu-
ation of the Hyperledger Fabric blockchain deployment in the
laboratory and in a real production mesh network gives us an
understanding of the performance, overhead, influence of the
underlying network, and limitations of this framework. The
results show critical aspects that can be optimized in a Hyper-
ledger Fabric deployment, in the perspective of CMNs, where
several components can prove to be bottlenecks and therefore
put a limiting effect on the rate of economic transactions in
a mesh network. Future work will expand the evaluation to
a wider range of hardware and network configurations and
considering real and synthetic transaction traces with a more
realistic design of an endorsement policy (chaincode).
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